Gevrey Regularity of Invariant Curves of Analytic Reversible Mappings

نویسندگان

  • Dongfeng Zhang
  • Rong Cheng
چکیده

We prove the existence of a Gevrey family of invariant curves for analytic reversible mappings under weaker nondegeneracy condition. The index of the Gevrey smoothness of the family could be any number μ > τ 2, where τ > m − 1 is the exponent in the small divisors condition and m is the order of degeneracy of the reversible mappings. Moreover, we obtain a Gevrey normal form of the reversible mappings in a neighborhood of the union of the invariant curves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gevrey-smoothness of lower dimensional hyperbolic invariant tori for nearly integrable symplectic mappings

This paper provides a normal form for a class of lower dimensional hyperbolic invariant tori of nearly integrable symplectic mappings with generating functions. We prove the persistence and the Gevrey-smoothness of the invariant tori under some conditions.

متن کامل

The Adiabatic Theorem for SwitchingProcesses with Gevrey Class Regularity

The adiabatic theorem in quantum mechanics can be understood as an eeect of phase space tunneling 12]. This allows us to use micro-local methods from the theory of pseudo diierential operators to proof an adiabatic theorem where the Hamiltonian (as a function of time) belongs to some Gevrey class. These classes are of interest since they can be used to model a compactly supported and smooth swi...

متن کامل

A Parametrised Version of Moser’s Modifying Terms Theorem

A sharpened version of Moser’s ‘modifying terms’ KAM theorem is derived, and it is shown how this theorem can be used to investigate the persistence of invariant tori in general situations, including those where some of the Floquet exponents of the invariant torus may vanish. The result is ‘structural’ and works for dissipative, Hamiltonian, reversible and symmetric vector fields. These results...

متن کامل

Dissipativity and Gevrey Regularity of a Smoluchowski Equation

We investigate a Smoluchowski equation (a nonlinear Fokker-Planck equation on the unit sphere), which arises in modeling of colloidal suspensions. We prove the dissipativity of the equation in 2D and 3D, in certain Gevrey classes of analytic functions.

متن کامل

Propagation of Gevrey Regularity for a Class of Hypoelliptic Equations

We prove results on the propagation of Gevrey and analytic wave front sets for a class of C∞ hypoelliptic equations with double characteristics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011